
 
 
 
 
 
Economic Computation and Economic Cybernetics Studies and Research, Issue 2/2022; Vol. 56 
______________________________________________________________________________ 
 

77 
 

Lecturer Tanmay SARKAR, PhD  
E-mail: tanmay@wbscte.ac.in; tanmays468@gmail.com  
Malda Polytechnic, West Bengal State Council of Technical Education  
Food Technology and Biochemical Engineering, Jadavpur University 
Assistant Professor Alok MUKHERJEE, PhD Student 
E-mail: alok@gcect.ac.in, alokmukherjee.ju@gmail.com 
Government College of Engineering and Ceramic  
Technology 
Assistant Professor Kingshuk CHATTERJEE, PhD 
E-mail: kingshukchatterjee@gcect.ac.in; kingshukchaterjee @gmail.com 
Government College of Engineering and Ceramic  
Technology 
Professor Tanupriya CHOUDHURY, PhD 
E-mail: tanupriya@ddn.upes.ac.in 
Computer Science, University of Petroleum and Energy Studies 
 
 
DETECTION OF EDIBILITY OF AMLA (Emblica officinalis) 
THROUGH PCA BASED IMAGE ANALYSIS 
 
 

Abstract.Identification of edibility of fruit samples is very essential, as well 
as difficult. This is more applicable in places where bulk fruits are used in different 
automated factories, where investigation of each fruit manually is an impossible 
task. In this work, we have proposed a principal component analysis (PCA) based 
threshold classifier scheme for the identification of edibility of amla fruits. We have 
analyzed only the hue histogram of the image samples using PCA to segregate the 
samples into Good, Intermediate or Bad classes. Use of analysis like PCA reduces 
the computational burden many folds compared to the other supervised learning 
models involving variants of neural network, or mathematically heavier transform 
based models like wavelet or Fourier transforms. The model is validated using 
different sample images. High accuracy of 98.33% for classification of samples is 
achieved in this work. Most importantly, low computational burden and non 
requirement of any other pre-filtering method to the sample images highlights the 
effectiveness of this algorithm. 

Keywords: Multivariate analysis; Principal Component Analysis (PCA),  
Hue histogram, Smartphone image; Consumer acceptability; Edibility classifier; 
Image analysis.  
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1. Introduction 
Identifying fresh fruits in market places for consumption is a difficult 

challenge for most people. Hence, the analysis of these images of different fruits, 
vegetables and other edible agricultural products bear a major significance; and 
here lies the major importance of different image-processing methods for the 
analysis and quality assessment of the agricultural products. In this work, we focus 
on developing an algorithm to identify fresh amla (Emblica officinalis) from its 
image. This task is difficult, especially due to the different varieties of the same 
fruit and vegetable which exhibit difference in colour, shape and texture with 
variation of their ripeness; as well as, due to the dissimilarity of image acquisition 
methods (Dubey and Jalal, 2015). 

The preliminary challenge with fruit image analysis is the vast variation in 
the texture and colour attributes. Seasonal variation, level of maturity, climate 
condition, soil composition and cultivar are the key parameters determine the 
colour variation of fruits and vegetables, even within the same batch. This 
variability ultimately causes a restriction in automated detection system. Thus 
expert dependency and manual verification of each fruit is obvious; both in 
industries as well as in the domestic household. Several unsupervised methods are 
developed by researchers for defect detection; but the development of unsupervised 
method for quality evaluation of native subtropical fruit is still less explored.  

The mobile diagnostics in the field of agriculture, health care and 
environmental monitoring is gaining attention, due to its exclusive features like on-
site availability, portability and rapid extraction of information. In order to avoid 
expensive instrument-based analysis, static nature of the laboratory equipment and 
time intensive routine test, instant and unsupervised system is required to maintain 
the food safety standard. The significantly large number of smartphone users may 
contribute to food standard analysis (Novotna, 2020). Smartphone enables the wide 
accessibility; fast communication, internet connectivity, real-time notification 
facility and geo-location features. It is portable, easy to use and feasible to deploy 
in diverse conditions. Smartphone may facilitate acquisition of information in a 
relatively easier way, compared to complex, lengthy and laborious food testing 
protocols executed by experts. Hence, Smartphone based applications; especially 
colour-based image analysis for food standard judgment is gaining popularity. 
Most importantly, image capturing features, non requirement of additional 
hardware for data collection and information management enable personal 
Smartphone users to develop an idea about the quality of food sample. This may 
initiate a paradigm shift in the sector of food safety and shelf-life detection.  

In this work, we have developed a Hue based analysis (HSV) for the 
quality assessment of amla. Amla has extreme importance in the traditional 
medicinal system from ancient days. Ayurvedic medicine (India) as well as 
Tibetan, Chinese and herbal medicine have utilized amla as an ingredient (Baliga 
and Dsouza, 2011). It is evident from different studies that amla contains lots of 
essential nutrients which are effective in fighting many diseases. It acts as an anti-



 
 
 
 
 
Detection of Edibility of Amla (Emblica officinalis) through PCA Based Image 
Analysis 
_________________________________________________________________ 

79 
 

oxidant, anti-microbial, anti-inflammatory agent and exhibits hypoglycemic, 
hypolipidemic activities (Kapoor et al., 2020; Diaconeasa et al., 2019). Due to the 
perishable nature of the fruit, it cannot be consumed after a few days without any 
preservation. Proper storage technique and preservation method can extend its shelf 
life (Goraya and Bajwa, 2015). There are few indications by which one can judge 
the freshness of the fruit like browning, bruises and change in shape of the fruit 
though these are not enough to understand the quality of the fruit by eye 
estimation. Continuous softening of the fruit cell wall primarily regulates the shelf-
life of fruits. Deterioration continues during transportation and handling; outer 
surface is softened and become vulnerable to microbial and pest attack 
(Bahramsoltani and Rahimi, 2020). Textural attributes and firmness are the most 
important factor responsible for consumer acceptance. This degradation in surface 
texture is reflected from the hue spectrum of the fruits.  

Several researches have been carried out for the assessment of the quality 
of fruits and vegetables. Apart from detection of rotten samples, this analysis helps 
in detection of different species of these and their varieties (Dubey and Jalal, 
2015).This is more helpful in automatic price scheduling in a supermarket. Hence, 
the importance of digital image processing has become increasingly popular. Most 
of the researches use either colour or texture analysis; either in binary mode or as a 
multiclass detection method. Some other works also analyzes the shape, firmness, 
absence of bruises as well for classification and quality assessment fruits.  

Many of these analyze the red-green-blue (RGB) levels of the image or the 
hue-saturation-intensity (HSV) level. Here, we have adopted a binary method of 
faulty fruit detection using hue histogram analysis which has high application in 
research (Danti et al. 2012), rather than another popular choice of colour 
histograms used in red-green-blue (RGB) space (Dubey and Jalal, 2012; Antonelli 
et al., 2004). Hue and saturation parameters bear high importance since these are 
less prone to variation due to the surrounding illumination level and variation in 
sensor of the capturing device, compared to red-green-blue (RGB) parameters. 
More importantly, we have analyzed the hue histograms using PCA, instead of 
direct hue spectrum analysis. We have also shown that application of PCA 
improves the detection of fruit quality. PCA is one of the major statistical methods 
used for analyzing multivariate data and identifying the major directions of 
variation, in the descending order of importance. The hue intensity histograms are 
analyzed using the proposed PCA algorithm to obtain the PC score index for each 
image individually. These PC features are further analyzed using threshold based 
classifier scheme to segment the bad or non-edible fruit images from the good and 
intermediate quality fruit images. The good and intermediate quality fruit images 
together are denoted as the edible set. The qualities of fruits were determined by 
food experts based on Hedonic scale on three parameters: colour, shape and 
texture. 

In the proposed work we have explored the hue levels of different sets of 
fruit samples; with the help of principal component analysis (PCA). PCA uses an 
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advance analysis of the statistical covariance and the associated eigenvectors and 
eigenvalues, to yield a number of principal directions in the descending order of 
importance. PCA is extremely effective in identifying the key features from a 
signal or image; simultaneously, reducing the dimension of a multivariate data set; 
hence, used extensively in agricultural researches, especially for defect detection of 
different fruits and vegetables like orange and mandarin (López-García et al., 
2010), cucumbers (Liu et al., 2006), mushrooms (Gowen et al., 2008), peaches 
(Sun et al., 2018), apple (Zhu et al., 2007) and several more. Other methods of 
have also been practiced where different quality parameters like moisture, 
instrumental colour, antioxidant profile etc. have been investigated using PCA 
(Patras et al., 2011). In several of these works, PCA plays a vital role in reduction 
of the image dimension; although, retaining the most important directions of 
variation. The authors of (Geladi and Grahn, 2006; Wu et al., 1997) have described 
the effective ways of multivariate analysis; as well as, shown the use of kernel 
PCA, especially for multivariate image analysis (MIA). Baranowski et al., 2012; 
Zhao et al. 2010; Ariana et al., 2006 and Xing et al., 2005 have proposed efficient 
bruise detection methods using a multi-tool model including PCA. Thus, 
altogether, PCA has a major role in this field of research; and we have explored 
this method further in this work. 

In this paper, we have described the fruit sample and methods of image 
acquisition in the initial sections; followed by analysis of the methodology of 
designing the classifier with case studies and histogram and PCA features. Finally 
we have described the validation of the model and concluded the paper explaining 
the key features and outcomes of the proposed algorithm. 

2 Experimental arrangements 

2.1 Material and method 

Amla were bought from Agri Horticultural Society of India, Kolkata, India 
(22°31'41.52" N and 88°19'59.88" E) harvested on the same day of purchase. Out 
of 240 fresh fruits 12 samples were choose randomly. All the 12 fruits were 
mature, sound (87.3% moisture, 9.6% carbohydrate, 1.2% protein, and 0.6% fat) 
free from any bruise or scar with 15 to 25 g of weight and 2.7 to 3.6 cm of diameter 
(Sarkar et al., 2021).   

2.2 Image acquisition 
The samples were captured at different angles with Redmi Note 9 Pro 

smartphone device (48 megapixel camera with Samsung Isocell GM2 sensor) and 
the operating system was Android v10 (Q). The distance between the mobile 
camera and the fruit was 25 cm. The size of each image was 8000 × 6000 pixels. 
The physical aperture was F1.79 (Mukherjee et al., 2021). 

2.3 Colour, shape and texture evaluation 
The semi-trained panel (35 male participants and 28 female participants) 

with 21-48 years of age bracket was selected in coherence with the guidelines of 
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ISO 8586-1 (1993) to evaluate the colour, shape and textural changes of the 
sample. ISO 4120:2004, ISO 5496:2005 and ISO 10399:2004 were considered for 
selection of panel lists in the basis of triangular discrimination, proficiency of 
colour identification and competency of the members in differentiating two fruit 
depending on their colour, shape and texture. The colour, texture and shape of fruit 
samples were apprised with nine point hedonic scale (where, 9 = excellent, 8 =very 
good, 7 = good, 6 = satisfactory, 5 = neither good nor bad, 4 = bad, 3 = moderately 
poor, 2 = poor, 1 = worst). Samples were evaluated at 25±5 °C and ambient 
conditions. The hedonic scores were recorded and reported as the average numeric 
value. 

2.4 Data set description 
Amla samples are kept at the same position for the next few days. We have 

tested the fruits with Hedonic scale on each day and thrice daily as mentioned 
earlier. It is observed from the Hedonic scale values that the quality of fruits falls 
below 5 point from seventh day onwards. In this work, we have found that fruit 
samples on day 1 and day 2 are at the most fresh condition. Hence, we have 
segmented the class of fruits in such a way that when the Hedonic scale level is 
above 5 we are calling it as ‘Edible’ class and when the level falls below 5 we are 
calling it ‘Non-Edible’ class. Hence the fruit images taken from 7th day onwards 
are treated as ‘Non-Edible’ class, and prior to that we are denoting those by 
‘Edible’ class.  

We have further segmented the images of the ‘Edible’ class into two more 
categories; i.e., the images taken on day 1 and day 2 are treated as the freshest 
condition which is treated as ‘Good’ condition and the images taken during day 3 
to day 6 are treated as ‘Intermediate’ conditions. We have observed five fruits on 
each day thrice daily at three different times: morning, afternoon and night. Hence, 
the total data set contains (5 samples × 3 times × 8 days), i.e., 120 images, out of 
which 60 images are considered for training and the rest of the 60 images are used 
for testing the algorithm. As per this analysis, the good data set contains (5 samples 
× 3 times × 2 days), i.e., 30 number of image samples; the intermediate set contains 
(5 samples × 3 times × 4 days), i.e., 60 number of images and the ‘Non-Edible’ 
class of the ‘Bad’ class contains (5 samples × 3 times × 2 days), i.e., 30 number of 
samples. Out of these three classes: ‘Good’, ‘Intermediate’, and ‘Bad’, which 
thereby contains 30, 60 and 30 number of fruit sample images respectively, we 
have randomly picked up half of the images from each of these classes and used for 
training.  We have further used the remaining set of data of exactly the half number 
of images for validating the proposed scheme. Hence, the training and test classes 
contain 60 images each, containing all three classes. Further we have made an 
attempt to identify the robustness of the scheme by cross validating the algorithm. 

2.5 Morphological changes in fruits with progression of time 
Rotting of fruit is a natural process. With progress in time, the cell walls 

begin to break down and the fruits become less solid, which is reflected in its 
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3.3 Application of Principal Component Analysis (PCA) 

We have analyzed the hue intensity map so obtained using principal 
component analysis (PCA). PCA is a broad extension of identifying the 
interrelation or the correlation between a set of variables in a multivariate statistical 
model. PCA primarily emphasizes on the variance of a data set rather than the 
covariances and correlations. For a vector x containing p number of random 
variables, PCA tries to identify a linear function aT

1 x with highest variation. This 
may be expressed as: ܽଵ்ݔ = 	ܽଵଵݔଵ 	+	ܽଵଶݔଶ	 + 	…+	ܽଵݔ = ൫ܽଵݔ൯ୀଵ                     (1) 

Here, a1 is a vector of the constant coefficients of the linear equation and aT
1 

denotes the transpose of a1. In this work, we have analyzed the histogram frequency 
of each image using PCA; hence, the value of p is 256. Further, another linear 
function aT

2 x is investigated, which is uncorrelated with aT
1 x with maximum 

variance. This is continued till k-th stage to obtain a set of uncorrelated linear 
function aT

1 x, aT
2 x, ... ,aT

kx. Thus, the k-th derived variable is termed as the k-th 
principal component (PC). Out of the maximum p-th PC, maximum variation is 
obtained using the ordered sequence of only m PCs, and definitely m is practically 
much smaller than p. This ensures high reduction in dimension of the data. In most 
of the cases, the unknown ∑ is replaced by the corresponding covariance matrix S, 
given by: ܵ = ଵିଵ ்ܺܺ                  (2) 

for a set of n observations given by x1, x2, ... , xn, and X is an (n × p) matrix with (i, 
j)-th element is given by (ݔ − ݔ̅ ,) andݔ̅ = ଵ ∑ ୀଵݔ ,    j = 1, 2, ... ,p               (3) 

Thus, the (j, k)-th element of S is given by,  ଵ୬ିଵ ݔ) − ݔ)(ݔ̅ − )ୀଵݔ̅ 	ଵݖ̃ is defined from the above observations as	ଵݖ̃ (4)                            = 	 ܽଵ்  , and i = 1, 2, ... , n. Theݔ
vector of coefficients ܽଵ் is chosen in order to maximize the variance given by: ଵ୬ିଵ 	ଵݖ̃) − ଵ̅)ଶୀଵݖ                 (5) 

Considering normalization constraints ܽଵ்ܽଵ = 1. Similarly, ̃ݖଶ	, ̃ݖଷ	... are obtained; 
where, ܽଵ்ݔ is the k-th PC as defined earlier. The k-th largest eigenvalue of S, 
which is the sample covariance matrix for the above series x1, x2, ... ,xn, and ܽis 
eigenvector corresponding to k = 1, 2, . . . , p; as defined by the expression (1). 
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Now, if the two (n × p) matrices ෨ܺ	and ෨ܼ	are defined such a way that (i, k)-th 
element is equal to the k-th element ݔ of ݔ and ̃ݖrespectively. Thus, ෨ܺ	and ෨ܼ	are related to each other using ෨ܼ = 	 ෨ܺܣ, where, ܣ is a (p × p) orthogonal 
matrix, k-th column of which is defined by the coefficient vector ܽ. Thus, the k-th 
PC is denoted using ݖ = 	்ܽݔ, and ܽ is an eigenvector of ∑ of its k-th largest 
eigenvalues denoted by ߣ. If, ܽ is of unit length, i.e., if ்ܽܽ = 1, then, variance 
of ݖ is equal to ߣ. 

PCs are concerned on maximizing the variance; i.e., maximizingݖ = 	்ܽݔ =	்ܽ ∑ ܽ, following the constraint்ܽܽ = 1; and this is executed using the 
technique of Lagrange multipliers as a standard method. Thus it maximizes the 
function  (்ܽ ∑ ܽ) – ߣ(்ܽܽ − 1)               (6) 

where, λ is a Lagrange multiplier. Differentiation is performed for maximizing the 
same function with respect to ܽ, which gives, ∑ܽ −λܽ = 0;  i.e., ൫∑−λܫ൯ܽ = 	0;            (7) 

where, ܫis an identity matrix with a dimension of (p × p). Thus it gives λ and ܽ 
as a set of eigenvalue and corresponding eigenvector of Σ respectively. The 
eigenvector with maximum variance of (்ܽݔ) is obtained by maximizing the term (்ܽ ∑ ܽ), which in turn, leads to  

,்ܽ ∑ܽ = ்ܽλܽ = λ்ܽܽ = λ;since, ்ܽܽ = 1           (8) 

Thus, maximization of eigenvalue λ is required, i.e., the eigenvector ܽcorresponding to the highest eigenvalue λwould lead to the highest PC (்ܽݔ), 
where, variance ൫்ܽݔ൯ = 	 λ; thus, k = 1 corresponds to the first PC and so on. 

In this work, we have used PC1 only for extracting the image quality in 
terms of the PCA feature; thus making the analysis light in computational. These 
are further used to develop the threshold based classification model. 

3.4 Metrics for performance analysis  

The performance of the prediction or the classification efficiency through PCA is 
measured using the metrics like accuracy, precision, recall (or sensitivity), F-
measure (or F-score), and specificity according to the equations as follows: 

Accuracy (%): (TP+TN)/(TP+FP+FN+TN)              (9) 

Precision (%) = TP/(TP+FP)              (10) 

Recall (%) = TP/(TP+FN)              (11) 

Specificity (%) = TN/(TN+FP)                      (12) 

F-measure (%) = 2*(Recall * Precision) / (Recall + Precision)          (13) 
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4.4 Classifier outcomes 
Validation of the proposed model has been carried out using the rest of the 

60 number of samples. On an overall analysis, the proposed method is found to 
produce a very high accuracy as shown in table 1. It is observed from Table 1 that 
proposed model is able to classify the test image samples with 98.33% accuracy. 

Table 1 – Result of the proposed classifier 

  
Classifier Result 

Good Intermediate Bad 

A
ct

ua
l 

R
es

ul
t Good  15 0 0 

Intermediate 0 29 1 

Bad 0 0 15 

Overall Accuracy:  98.33% 

4.5 Metrics for performance analysis 
Table 2 showed the performance of the proposed methodology. The 

accuracy of classification signifies only the presence or absence of errors. It is 
basically measured as accurate classification (TP+TN) efficiency of the proposed 
model on the overall dataset. The high accuracy 98.33% of the proposed model 
indicates the absence of errors in the model. Researchers often describe model 
robustness with specificity and recall. The high numeric value for recall and 
specificity stands for the flawless classification of the target classes. The recall is 
often denoted as the rate of true positive while the rate of true negative is termed as 
specificity. Both the specificity and recall provide the indication that how 
competently the fresh fruits were distinguished.  

Table 2 – Result for the performance analysis of the proposed classifier 

Parameter 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
Specificity 

(%) 
F-measure 

Good 100 100 100 100 50 

Intermediate 98.33 96.67 100 96.77 49.15 

Bad 98.33 100 93.75 100 48.39 

4.6 Effectiveness of using PCA 
The effectiveness of using PCA in the proposed work is further justified 

from Figure 7 and Figure 8. Figure 7 shows an average representation of the 
frequency distribution of the hue intensity histogram, separately for the three major 
classes and Figure 8 is the representation of the distribution of the hue histogram 
frequency three classes of fruit samples using boxplots. 
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significant enough to develop distinctly separable thresholds to segregate the three 
classes. This distribution is further emphasized in Figure 8(a) which shows a 
boxplot of the frequency distribution from the hue histogram directly and Figure 
8(b) is a magnified view of Figure 8(a). A comparative analysis of this boxplot 
with that of the same obtained using the principal component 1 values as shown in 
Figure 5, shows that the direct hue intensity boxplots of Figure 8 has large overlap 
in values between the three classes; although, the medians are separable. Thus, the 
above analysis proves that use of direct hue intensity plot doesn’t provide 
distinctive separation among each of the three categories, whereas, application of 
PCA over these hue intensity features largely improves the classification accuracy. 
This proves the effectiveness of the proposed PCA-threshold based method for 
segregating the three classes. 

4.5 Discussion 

The most important features of the proposed works are described as follows: 

• The present method is simple in analysis as it used PCA as the only tool for 
extracting the features from the hue histogram of the image. Only the first 
principal component is used in this analysis for identifying the key features of 
the hue intensity diagram; thus, reducing the computational burden, as well as 
requirement of large memory for computation. 

• The proposed method is simpler in computation compared to several other 
popular techniques like the supervised learning models involving neural 
networks, which require large and diverse data set for accurate training; or the 
mathematically heavier transform based algorithms like wavelet or Fourier 
transforms, which demand for intricate analysis of signals. Hence, the proposed 
method is easier to implement in real life applications. 

• Hue intensity map is analyzed here since it is less affected by the variation in 
light intensity level; which is quite common considering practical 
circumstances. In most of the cases, light intensity of the fruit image are prone 
to variation as the images are mostly taken in different condition of daylight, 
including variation due to sunny or overcast, indoor or outdoor condition etc. 

• Thresholding method has been applied over the PC score based index plot, 
which is found to segregate the three classes distinctly. This shows the 
effectiveness of the proposed scheme. 

• No specific pre-processing is required in this scheme for the fruit images. The 
images so taken are centre cropped only, followed by direct histogram analysis. 
No other filter especially meant for equalization of colour or light intensity is 
applied in this work. This reduces the cost computation to a large extent. 

• The proposed method uses the images of fruit taken with Smartphone only, 
which is a more user friendly and convenient option, especially considering on-
site availability and portability of the device. 
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• Only the hue level of each image is analyzed here out of the three layers of the 
image: hue, saturation and intensity. Analysis of only a single layer reduces the 
image layer depth to 33%; thereby, reducing time of computation. 

• Finally, a high classification accuracy of 98.33% proves the high efficiency of 
the proposed method in identifying the quality of fruit among a set of different 
qualities of such samples. 

5. Conclusion 

A pattern identification algorithm is proposed in this paper for the 
detection of rotten members from a large set of amla (Emblica officinalis) images, 
captured using smart phones to avail their advantages of on-site availability and 
portability. The method uses only hue intensity histogram of the unprocessed 
cropped images and analyzed these features using principal component analysis. A 
threshold based implementation has been modeled using the PCA score based 
index features. The proposed method is simple as it avoids use of any complex 
mathematical, statistical analysis, or supervised learning models incorporating 
neural network based models. Non use of any specific pre-filter allows for reduced 
computational complexity. Besides, the hue intensity map, used in this analysis, is 
less prone to variation of ambient luminance; which is a key feature of practical 
robustness of the proposed scheme. Finally, a threshold based classification 
accuracy of 98.33% to detect the rotten specimen of fruit samples proves the 
effectiveness of the proposed scheme; as well as displays its applicability for real 
life application.   
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